All Resources
Guide
DatabasePostgreSQLPerformance
May 31, 2024

PostgreSQL Query Optimization

Techniques for writing efficient SQL queries and indexing strategies for PostgreSQL.

Overview

Optimize PostgreSQL performance through proper indexing, query planning, and schema design. Learn to identify bottlenecks and write efficient queries.

Key Concepts

  • Query Plans: EXPLAIN and ANALYZE for understanding queries
  • Indexes: B-tree, Hash, GiST, and GIN indexes
  • Joins: Optimize join strategies
  • Statistics: Maintain column statistics for better plans
  • Connection Pooling: Manage connection overhead

Query Analysis

-- View query execution plan
EXPLAIN ANALYZE
SELECT * FROM users WHERE email = 'test@example.com';

-- Results show:
-- Seq Scan on users (cost=0.00..35.50 rows=1 width=100)

Create Indexes

-- Single column index
CREATE INDEX idx_users_email ON users(email);

-- Composite index
CREATE INDEX idx_orders_user_date ON orders(user_id, created_at DESC);

-- Partial index (only some rows)
CREATE INDEX idx_active_users ON users(id) WHERE is_active = true;

-- GIN index for arrays/full-text search
CREATE INDEX idx_user_tags ON users USING GIN(tags);

Common Optimizations

-- Use LIMIT with offset for pagination
SELECT * FROM orders ORDER BY created_at DESC LIMIT 10 OFFSET 20;

-- Batch inserts
INSERT INTO logs VALUES
  (1, 'error', now()),
  (2, 'warning', now()),
  (3, 'info', now());

-- Use prepared statements
PREPARE get_user(int) AS SELECT * FROM users WHERE id = $1;
EXECUTE get_user(42);

Proper indexing can improve query performance by 100-1000x.

Curated by

Shyam